三棱锥体积如何计算

2024-08-30 09:17:38

1.三棱锥体合作积为:底面绝域殊方积×高÷3所朴素有立体图形的来世不可待冰炭不相容体积都是底面和谐积×高,而三居高声自远棱锥可以看成欣喜是立体图形的耳廓富相一部分,所以春秋无义战三棱锥的体积此风不可长就为底面积×陡峭高÷3.

小编还为您整理了以下内容,可能对您也有帮助:

三棱锥的体积怎么求?

三棱锥的体积公式介绍如下:

V=(1/3)*S*H。

计算公式

h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长有:

三棱锥棱锥的侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则:(其中Si,i=1,2为第i个侧面的面积)

S全=S棱锥侧+S底

S正三棱锥=1/2CL+S底

V=S(底面积)·H(高)÷3

三棱锥的底面面积S加顶点A'面积0除以2的平均面积1/2S的一个三棱柱乘以高h,就是三棱锥体积:

V=1/2(S+0)h=1/2Sh

S面积三角形AC乘h'除以2

扩展资料:

三棱锥顶点射影与底面三角形的“心”

设有三棱锥P-ABC,P在平面ABC上的射影为O,现讨论当三棱锥满足什么条件时,O分别是△ABC的外心、内心、旁心、重心、垂心(三角形五心)。

外心

若O是△ABC的外心,则OA=OB=OC。由于OP⊥平面ABC(射影的定义),因此OP⊥OA、OP⊥OB、OP⊥OC。勾股定理得PA=PB=PC。又tanPAO=OP/OA,tanPBO=OP/OB,tanPCO=OP/OC,由此可知∠PAO=∠PBO=∠PCO。

综上,可得到以下定理:

当三棱锥的三条侧棱相等时,顶点在底面的射影是底面三角形的外心。

当三棱锥的三条侧棱与底面所成角相等时,顶点在底面的射影是底面三角形的外心。

内心

若O是△ABC的内心,则O到三边距离相等,且O在△ABC内。设O到BC、AC、AB的垂线段分别为OD、OE、OF,那么OD=OE=OF。由勾股定理得PD=PE=PF。又tanPDO=OP/OD,tanPEO=OP/OE,tanPFO=OP/OF,因此∠PDO=∠PEO=∠PFO。

且由三垂线定理可知PD⊥BC、PE⊥AC、PF⊥AB,即∠PDO、∠PEO、∠PFO分别是二面角P-BC-A、P-AC-B、P-AB-C的平面角。

综上,可得到以下定理:

当三棱锥的顶点到底面三角形三边距离相等,且顶点在底面的射影在底面三角形的内部,那么射影是内心。

当三棱锥的各个侧面与底面构成的二面角相等,且顶点在底面的射影在底面三角形的内部,那么射影是内心。