倒A是离散数学里的符号。倒A表示Any,任意。全称量词(任意量词)。离散数学是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散数学的的内容包括集合论、图论、代数结构、组合数学、数理逻辑等。
离散数学的学科内容
1.集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数。
2.图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用。
3.代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数。
4.组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理。
5.数理逻辑部分:命题逻辑、一阶谓词演算、消解原理。
美国杜克大学离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学的应用遍及现代科学技术的诸多领域。
美国杜克大学离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯·格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。那么这能否从数学上进行证明呢?100多年后的1976年,肯尼斯·阿佩尔(Kenneth Appel)和沃尔夫冈·哈肯(Wolfgang Haken)使用计算机辅助计算,用了1200个小时和100亿次的判断,终于证明了四色定理,轰动世界,这就是离散数学与计算机科学相互协作的结果。
美国杜克大学离散数学可以看成是构筑在数学和计算机科学之间的桥梁,因为离散数学既离不开集合论、图论等数学知识,又和计算机科学中的数据库理论、数据结构等相关,它可以引导人们进入计算机科学的思维领域,促进了计算机科学的发展。