球形的体积公式为:V球=4/3πR³(π≈3.14,R为半径),已知直径为3米,那么半径为1.5米,套入体积公式为:V球=4/3*3.14*1.5³≈14.13立方米(保留2位小数)
球的表面积公式为S球=4πR²
圆柱底面为圆形,求圆柱体积。V圆柱=S*h (S为圆的底面圆面积,h为圆柱的高)S=πR²,套入体积公式为:V圆柱=πR²×h=3.14×1.5²×6=42.39立方米
圆锥的底面为元,求圆锥的体积:V圆锥=1/3Sh(S为圆的底面圆面积,h为圆锥的高)S=πR²,套入体积公式为:V圆锥=1/3πR²×h=1/3×3.14×1.5²×5≈11.77立方米(保留2位小数)
圆的概念
1.到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心,通常用字母“o”表示。
2.连接圆心和圆周上任意一点之间的连线叫做半径,通常用字母“r”表示。
3.通过圆心并且两个端点都在圆周上的线段叫做直径,通常用字母“d”表示。
4.连接圆上任意两点的线段叫做弦。在同圆或等圆中,最长的弦是直径。
5.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。
圆的性质
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x-a)²+(y-b)²=r²。其中,o是圆心,r 是半径。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。