平方和公式
n (n+1)(2n+1)/6,即1^2+2^2+3~2+…+n 2=n (n+1) (2n+1)/6(注: =N^~2=N的平方)。平方和公式是一个比较常用公式,用于求连续自然数的平方和,其和又可称为四角锥数,或金字塔数也就是正方形数的级数。
平方和,数学术语,定义为2个或多个数的平方相加。通常是一些正整数的平方之和,整数的个数可以是有限个,也可以是无限多。
平方公式(a+b)^2=a^2+b^2+2ab,其中a^2+b^2是平方和。
平方和公式是一个比较常用公式,用于求连续自然数的平方和,其和又可称为四角锥数,或金字塔数也就是正方形数的级数。此公式是冯哈伯公式的一个特例。
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法。
表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。
补充
n个自然数的平方和公式为
1+2+...+n=n(n+1)(2n+1)/6。用数学归纳法:n=1时,1=1*2*3/6=1成立;假设n=k时也成立,那么k(k+1)(2k+1)/6=1+2+...+k。
两数和的平方,等于它们的平方和,加上它们的积的2倍。叫做完全平方公式。为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。这两个公式的结构特征
1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍。
2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍。
3、公式中的字母可以表示具体的数,也可以表示单项式或多项式等数学式。