完全立方公式
完全立方和公式
(a+b)³=a³+3a²b+3ab²+b³
解题时常用它的变形:(a+b)³=a³+b³+3ab(a+b),a³+b³= (a+b)³- 3ab(a+b),在做化简求值时是很有用的。
例如
[ (x-y)× (√x+√y) + 3(x√y-y√x) ] / (x√x+y√y)
=[ (√x-√y) + 3√xy × (√x-√y) ] / (x√x+y√y)
=(x√x-y√y) / (x√x+y√y)
完全立方公式分解步骤
完全立方和公式:(a+b)^3=(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3+3a^2b + 3ab^2+ b^3。
完全立方差公式:(a-b)^3= (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3-3a^2b + 3ab^2-b^3。
推广
(x1+x2+x3……+xn)*(x1+x2+x3……+xn)^2
=(x1+x2+x3……+xn)*(x1^2+x2^2+x3^2……+xn^2+2x1x2+2x1x3+......+2x(n-1)xn)
=x1^3+x2^3+x3^3+……+xn^3+3x1^2x2+3x2^2x1+……+3[x(n-1)]^2xn
完全立方公式包括完全立方和公式和完全立方差公式,完全立方和(或差)公式指的是两数和(或差)的立方等于这两个数的立方和(或差)与每一个数的平方乘以另一个数3倍的和(或差)。
区别
公式不同
完全平方差公式:(a-b)²=a²-2ab+b²。
平方差公式:a²-b²=(a+b)(a-b)。
计算具体数据结果不同(若a=2,b=1)
完全平方差公式:(a-b)²=a²-2ab+b²=1。
平方差公式:a²-b²=(a+b)(a-b)=3。
表达意思不同
完全平方差公式:两数差的平方,等于它们的平方和减去它们的积的2倍。
平方差公式:指两个数的和与这两个数差的积,等于这两个数的平方差。
完全平方公式口诀
首平方,尾平方,首尾相乘放中间。或首平方,尾平方,两数二倍在中央。
也可以是:首平方,尾平方,积的二倍放中央。
(a±b)²=a²±2ab+b²
同号加、异号减,负号添在异号前。
即(a+b)²=a²+2ab+b²
(a-b)²=a²-2ab+b²
注意:后面一定是加号。
平方差可利用因式分解及分配律来验证 。先设a及b。
ba-ab=0
那即是ab=ba,同时运用了环的原理。把这公式代入:
a²-ab+ba-b²