积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散。广义积分判别法不仅比传统的判别法更加精细,而且避免了传统判别法需要寻找参照函数的困难。只要研究被积函数自身的性态,即可知其敛散性。
判断积分的敛散性有两种方法:广义积分,improper integral,积分的方法,是套用公式,在国内称为凑微分法。代入上、下限,上限是无穷大,用取极限得到的是0,代入下限得到结果。能得到结果,也就是说,能得到具体数字答案的,就算收敛的。
积分后计算出来是定值,不是无穷大,就是收敛;积分后计算出来的不是定值,是无穷大,就是发散。广义积分判别法不仅比传统的判别法更加精细,而且避免了传统判别法需要寻找参照函数的困难。只要研究被积函数自身的性态,即可知其敛散性。
判断积分的敛散性有两种方法:广义积分,improper integral,积分的方法,是套用公式,在国内称为凑微分法。代入上、下限,上限是无穷大,用取极限得到的是0,代入下限得到结果。能得到结果,也就是说,能得到具体数字答案的,就算收敛的。