基本导数公式有
(1nx)’=1/x、 (sinx)'=cosx、 (cosx)’=-sinx。
求导公式
c'=o(c为常数)
(x~a)'=ax^(a-1), a为常数且a≠0
(a ^x)'=a^x1na
(e^x)'=e x
(1ogax)’=1/(x1na), a>0且a≠1
(1nx)’=1/x
(sinx)' =cosx
(cosx)’=-sinx
(tanx)'=(secx)^2
(secx)’=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)’=-1/√(1-x ^2)
(arctanx)’=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
(uv)'=uv'tu'v
(u+v)'=u'+v'
(u/)'=(u'v-uv')/ ^2
基本初等函数的导数表
1.y=c y' =0
2.y=a ^u y'=u a ^ ( u-1)
3.y=a 'x y'=a x1na
y=e'x y'=e~x
4.y=1oga,x y' =1oga, elx
y=1nx y'=1/x
5.y=sinx y' =cosx
6.y=cosx y'=-sinx
7.y=tanx y'=(secx)^2=1/(cosx)^2
8.y=cotx y'=-(cscx)^2=-1f(sinx)^2
9.y=arcsinx y'=1/√ (1-x^2)
10.y=arccosxy'=-1/√ (1-x^2)
11.y=arctanx y'=1/ (1+x^2)
12.y=arccotx y' =-1/(1+x^2)
13.y=sh x y'=ch x
14.y=ch x y'=sh x
15.y=thx y'=1/(chx)^2
16.y=arshxy'=1/√ (1+x^2)
17.y=ar chx y'=1/√ (x~2-1)
18.y=ar th y'=1/(1-x~2)