圆的弦长公式

2024-02-29 00:00:00

弦长=2Rsina,R是半径,a是圆心角;弦长为连接圆上任意两点的线段的长度。

弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。

圆的弦长公式是

1、弦长=2Rsina

R是半径,a是圆心角。

2、弧长L,半径R。

弦长=2Rsin(L*180/πR)

直线与圆锥曲线相交所得弦长d的公式。

弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]

其中k为直线斜率,(x1,y1),(x2,y2)为直线与曲线的两交点,"││"为绝对值符号,"√"为根号。

PS:圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。

补充

直线与圆锥曲线的位置关系是平面解析几何的重要内容之一,也是高考的热点,反复考查。考查的主要内容包括:直线与圆锥曲线公共点的个数问题;弦的相关问题(弦长问题、中点弦问题、垂直问题、定比分点问题等);对称问题;最值问题、轨迹问题和圆锥曲线的标准方程问题等。

关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。

在三角形ABC中,它的外接圆半径为R,则正弦定理可表述为

a/sinA=b/sinB=c/sinC=2R,即a=2RsinA,b=2RsinB,c=2RsinC;

(x-4)^2+y^2=16被直线y=(根号3)x所截得弦长

圆(x-4)^2+y^2=16与直线y=(根号3)x的一个交点恰为原点O(0,0),另一个交点记为A,则OA就是圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦,若记圆与x轴的另一个交点为B,则三角形OAB就是一个直角三角形,其中∠AOB=60°,∠OAB=90°,OB=2R,所以

OA=2Rcos∠AOB=2Rcos60°=R。

又圆的半径为4,所以圆(x-4)^2+y^2=16被直线y=(根号3)x所截得的弦长为4。