1是不是素数

2024-02-29 00:00:00

素数又叫质数,质数是指在大于1的自然数中,除了1和它本身以外,不能被其他自然数整除的数。

例如:3只能被1和3整除,除此之外不能再被其他数字整除,那么3就是质数。

最小的质数是2,它也是唯一的偶数质数,最前面的质数依次排列为:2、3、5、7、11、13、17、19、23、29、31等。

质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。

如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

1既不是质数(素数)也不是合数。通过单位表现出来的事物的第一个。一个或者几个事物所组成的整体,可以看作是单位“1”。

1是一个简单的阿拉伯数字。1的n次方(n∈R)都等于1。1有很多用法,比如长度、人数等,且1是圆周率的小数点后第1、3、36、40、49位等。

一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)。

质数具有许多独特的性质
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是无限的。
(4)质数的个数公式 是不减函数。
(5)若n为正整数,在 到 之间至少有一个质数。
(6)若n为大于或等于2的正整数,在n到 之间至少有一个质数。
(7)若质数p为不超过n( )的最大质数,则 。
(8)所有大于10的质数中,个位只可能是1,3,7,9。