求和公式是S=(1+n)*n/2,求S实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。
数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
补充
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
例如:an=2n+n-1,可看做是2n与n-1的和
Sn=a1+a2+...+an
=2+0+22+1+23+2+...+2n+n-1
=(2+22+...+2n)+(0+1+...+n-1)
=2(2n-1)/(2-1)+(0+n-1)n/2
=2n+1+n(n-1)/2-2
数列求和
数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
等比数列求和公式
通项公式 an=a1×q^(n-1)
求和公式 a1(1-q^n)/(1-q)
Sn=a1(1-q^n)/(1-q)(q≠1)
求和公式推导
(1)Sn=a1+a2+a3+...+an(公比为q)
(2)qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)
(3)Sn-qSn=(1-q)Sn=a1-a(n+1)
(4)a(n+1)=a1q^n
(5)Sn=a1(1-qn)/(1-q)(q≠1)
等差数列求和公式
Sn=n(a1+an)/2
Sn=na1+n(n-1)d/2=dn^2/2+(a1-d/2)n
末项=首项+(项数-1)×公差
项数=(末项-首项)÷公差+1
首项=末项-(项数-1)×公差
和=(首项+末项)×项数÷2
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和