十边形有35条对角线。十边形是由十条完全相同的边和十个完全相同的角组成的。正十边形的每个内角是144°,每个外角是36°。正十边形既是轴对称图形,又是中心对称图形。
根据正多边形边长计算公式an=2Rsin(180°/n)可得知正十边形边长与其外接圆半径比为﹙√5-1)/2=2sin18°符合黄金分割比,所以正十边形是唯一符合黄金分割比的正多边形。
十边形有35条对角线。十边形是由十条完全相同的边和十个完全相同的角组成的。正十边形的每个内角是144°,每个外角是36°。正十边形既是轴对称图形,又是中心对称图形。
根据正多边形边长计算公式an=2Rsin(180°/n)可得知正十边形边长与其外接圆半径比为﹙√5-1)/2=2sin18°符合黄金分割比,所以正十边形是唯一符合黄金分割比的正多边形。