二次项展开式的通项公式

2024-02-29 00:00:00

二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664-1665年提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

公式为

系数性质

⑴和首末两端等距离的系数相等;

⑵当二项式指数n是奇数时,中间两项最大且相等;

⑶当二项式指数n是偶数时,中间一项最大;

⑷二项式展开式中奇数项和偶数项总和相同,都是2^(n-1);

⑸二项式展开式中所有系数总和是2^n。

二项式定理的系数Cnk怎么求

Cnk = [ n (n-1)(n-2)....(n-k+1) ] / k的阶乘;

例如:C5 2 =(5×4 )÷ ( 2×1)=10。

对于任意一个n次多项式,总可以只借助最高次项和(n-1)次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项,后面既可以有常数项,也可以有一次项、二次项、三次项等,直到(n-2)次项。

特别地,对于三次多项式,配立方,其结果除了完全立方项,后面既可以有常数项,也可以有一次项。

由于二次以上的多项式,在配n次方之后,并不能总保证在完全n次方项之后仅有常数项。于是,对于二次以上的一元整式方程,无法简单地像一元二次方程那样,只需配出关于x的完全平方式,然后将后面仅剩的常数项移到等号另一侧,再开平方,就可以推出通用的求根公式。

对于求解二次以上的一元整式方程,往往需要大量的巧妙的变换,无论是求解过程,还是求根公式,其复杂程度都要比一次、二次方程高出很多。