n阶矩阵是不是方阵
是,n阶矩阵和n阶方阵是一个意思。
阶数只代表正方形矩阵的大小,并没有太多的意义。说一个矩阵为n阶矩阵,即默认该矩阵为一个n行n列的正方阵。
矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。
矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
方阵和矩阵的区别
方阵和矩阵的区别是形式不同。
1.方阵实际上是一种特殊的矩阵,当矩阵的行数和列数目相等时,可以称之为方阵,比如:某一矩阵的行与列数都是5,可以称之为5阶方阵。
2.二个矩阵相加就是将每一行元素加起来,两行列式相加,使操作的结果相加,在一些特殊的情况下(如行或列),只能将一行(或列)元素相加,其余元素照写。
3.在线性空间中矩阵是一个元素。行列式是矩阵的一种性质。近代数学中行列式的概念已被边缘化,行列式在实际应用中可以说只是一个矩阵的计算而得很有用。值得注意的是,高票答卷中的行列式相当于一个矩阵的模这一说法并不严格,因为行列式值有正或负,而模作为距离度量则要求对与错。类似于向量模长的概念应为范数。