替代电池技术路线图2030

俺是元小锂 2024-04-03 08:28:34

来源:Alternative Battery Technologies Roadmap 2030+ (fraunhofer.de)

关于替代电池技术的路线图解决了一些问题:替代电池技术具体优势是什么?

Me-ion电池

钠离子电池在结构和操作原则方面与锂离子电池非常相似。然而,它们对资源的依赖程度较低,具有更好的可持续性和成本效益的潜力。锌离子电池具有比锂离子电池低得多的能量密度,但同时由于使用了水基电解质,环境足迹要低得多。MIBs有潜力提供缺失的高重量和体积能量密度,这可能超过锂离子电池。铝离子电池可以设计成比锂离子电池具有更高的功率密度,比电容器具有更高的能量密度,以及高循环寿命和高倍率。然而,它们的能量密度比大多数其他Me-ion电池技术低得多。

Me-S电池

在Me-S电池领域也存在有前景的技术。锂硫电池具有比锂电池更高的重量能量密度的潜力,尽管体积能量密度和循环稳定性可能更低。此外,由于S的高能量密度和低成本,也有可能实现低每千瓦时成本。需要改进循环稳定性和功率密度。Na-S HT电池的重量能量密度略低于锂离子电池。由于使用的材料不同,Na-S HT电池的二氧化碳排放量可能比锂电池低。然而,系统效率和相对较高的成本都是一个明确的挑战。在这方面,Na-S RT电池实质上更有优势,并且在长期内也可以实现与锂电池相似的重量能量密度。

Me-air电池

在考虑的Me-air电池中,锂空气电池的技术准备水平(TRL)特别低,相应地有很高的研究需求。然而,理论上,锂-空气电池可以拥有极高的重量能量密度,而成本可能比锂电池略低。但要实现这一点,需要解决循环稳定性问题。锌空气电池可以认为比锂空气电池更先进,具有更高的TRL,并且可以实现与锂电池相当的相对较高的能量密度。

此外,它们甚至可能带来更低的成本和更少的二氧化碳足迹。然而,它们的功率密度相对较低。尽管根据公司公告,锌空气液流电池设计多年来一直处于商业化的边缘,但它尚未能够在市场上作为一种可行的替代电池技术建立自己的地位。

RFBs

基于钒的可再生燃料电池已经在市场上建立起来,但仍有改进的潜力(例如,通过材料替代,特别是钒),以进一步降低成本和二氧化碳足迹。因此,如果需要低成本(例如,锌基电池)或高资源可用性(特别是钠基或镁基电池),则考虑的一些替代电池技术特别合适,而它们的技术kpi主要决定它们对特定应用的适用性。

1. 介绍

本路线图的重点

因此,该路线图侧重于替代电池技术,这些技术似乎有希望在一个或多个长期应用中得到应用,也就是说,在一般情况下或在欧洲尚未商业化的电池。

该路线图涵盖了金属离子(Me-ion)、金属硫(Me-S)、金属空气(Me-air)和氧化还原液流电池(rfb),其中钠离子电池(SIB)(一般和盐水,SIB盐)、镁离子电池(MIBs)、锌离子电池(ZIBs)、铝离子电池(AIBs)、锂硫(Li-S)、室温和高温下的钠硫(Na-S RT和HT)、锂空气(Li-air)、锌空气(Zn-air)和RFB进行了更详细的研究。

路线图采用整体视角,并涵盖

技术方面(kpi、TRL水平、潜在的未来发展);经济方面(成本,潜在的应用和市场,生产,供应链)生态方面(例如,资源可用性、可持续性)

1.1 市场发展

市场发展

到2030年,全球对锂离子电池的需求将超过每年3太瓦时(图1)。大多数技术报告和市场预测,到2030年,全球对锂离子电池的需求将达到2至4太瓦时,在最大情况下将达到6太瓦时。2030年后,市场将继续增长。到那时,新的市场,例如个人客运航空和许多其他市场可以达到相关的市场份额,这将进一步增加需求。从长远来看,全球电池需求每年超过10太瓦时被认为是现实的。

1.2 路线图法

我们使用了许多相互关联的方法来绘制这个路线图,它们依次建立在彼此的基础上(图2)。

1.3 对标锂离子电池

当前和未来的关键绩效指标

LIB可能的性能特征范围非常大。例如,通过正确的材料选择和电池设计,可以生产充放电率高达10C的高性能电池(Li4Ti5O12,钛酸锂(LTO)基锂电池),寿命为数千次循环的高性能电池,或重量和体积能量密度超过250 Wh/kg和700 Wh/l的高能电池(例如NCA-LIB)。然而,所提到的所有最大值不能在单个电芯中同时实现。

2. 替代电池技术

2.1 替代电池技术概览

锂的许多特性对电池设计是有利的,并导致了锂离子电池(LIB)技术与铅酸(PbA)或镍氢(NiMH)电池等其他系统的建立。锂轻(比重量),小(离子半径),具有非常低的电极电位(与标准氢电极/ SHE相比),因此具有高比容量的广泛电位电极(宿主)材料是可用的,并且在电池水平上可以实现高电压。虽然大多数电极组合没有合适的和本质稳定的电解质,但有机电解质可以实现稳定的运行。

原则上,锂离子电池的替代电池系统,以及锂在电极材料中的嵌入,可以以不同的方式想象:

通过在电极上利用合金化、转化或沉积反应,通过完全不同的电极概念,例如,在阴极用气态氧通过使用其他带电荷的元素/离子。

然而,许多锂的替代品要么具有不太有利的电极电位,要么具有更大的离子半径(表1)。尽管这两个参数并不能直接描述这些离子在电池中的性能,但它们是可以达到的电池电压和存储所需体积的指标。

2. 替代电池技术

2.1 替代电池技术概览

该路线图侧重于那些在一种或多种应用中似乎有前景的替代电池技术,其中前景涵盖了不同的方面,如性能、经济和生态方面。此外,该路线图侧重于长期发展,因此,在一般情况下或在欧洲,尚未商业化的电池。基于以前的路线图和文献的见解,以及与国家电池专家进行的在线调查,该路线图侧重于金属离子(Me-ion),金属硫(Me-S),金属空气(Me-air)和氧化还原液流电池(RFBs)以及选定的子技术(表2)。

2.2 文章和专利

技术出版物的共享和动态

LIB出版物的数量从2008年左右到2014年左右呈指数级增长,然后一直到2020年呈线性增长。2020年以后,可以观察到新的更强劲的增长。从2000年到2010年,出版物的数量从500篇增加到2000篇,从那时起,每年大约有1000篇额外的文章发表,也就是说,仅在2020年就有12000篇。

与LIB基准相比,替代电池技术自2012年以来一直在发展,从几个百分点的份额开始,增加到约10 - 20%的份额(特别是SIB, Li-S电池)。最近,关于ZIB和锌空气电池的出版物增长强劲,并表明在未来几年内可能达到10%的份额(图4)。RFB显示出与LIB相似的增长率。Na-S电池的增长率更高,但市场份额低于1%。目前,关于锂空气电池的出版物数量正在下降。

欧盟28国出版物的份额和动态

根据可替代技术的不同,欧盟出版物的份额从10%到25%不等(图5)。对于LIB而言,份额为18%,最近11%的年增长率略高于全球LIB出版物的增长率。除了负增长的锂空气电池(低于-10%),所有其他替代电池技术与LIB基准相比都显示出更高的增长率(特别是ZIB和锌空气电池出版物)。有一些技术,如RFB、AIB、Na-S电池或SSB,欧盟28国在全球出版活动中占有较高的份额。

技术专利份额与动态

LIB的专利申请从200件增加到1000件(从2000年到2010年),在2012年达到顶峰(几乎有1600件申请)。在2017年之前,观察到停滞和部分下降。从那以后,又出现了新的增长。以此为基准,可以看出,在LIB专利申请停滞的情况下,替代电池技术专利增加较多。在过去的几年中,一些替代技术停滞不前(例如,RFB),而与LIB相比,其他技术则经历了或低或高的增长率,即5%至15%的增长率,而LIB的增长率为11%(图6)。

欧盟28国专利份额和动态

对于大多数替代技术,欧盟专利申请的份额从13%到19%不等,LIB的基准为15%(图7)。然而,RFB的份额为25%。关于增长率,以及应用程序的动态,替代技术的增长率从低于10%到超过20%不等,而LIB作为基准的增长率为10%。Me-S专利申请最近开始下降,AIB专利申请增长率最高,超过45%。

国家份额和参与者

在所有考虑的技术中,中国都是领先的参与者,根据技术的不同,其份额超过30%至近80%(图8)。对于LIB,其份额约为55%。可以看出,中国科学院在中国的出版活动以及与其他国家和世界地区的全球合作中发挥着突出的作用。此外,中国大量的一流大学也为大量的出版活动做出了贡献。在美国,一些顶尖的大学和研究实验室根据不同的技术贡献了10%到25%的出版活动份额。欧盟28国也拥有约10-25%的出版份额,与美国相当相似。在欧洲,领先的研究中心(特别是德国的KIT和FZ,以及法国的CNRS和其他研究中心)以及欧洲领先的大学是研究活动的热点之一。

日本在几乎所有被考虑的技术领域都处于领先地位,专利申请的份额从25%到40%以上不等。作为基准,日本在LIB中的份额最高,但在AIB中也有42%的份额。只有在锂电池方面,韩国和美国领先于日本,超过25%。对于Li-air,美国也以近30%的份额领先于日本(图9)。

关于参与者和专利申请人,我们观察到,对于日本,领先的电池制造商(如松下,GS汤浅等)以及电池价值链上的各种供应商都在为专利活动做出贡献。对于韩国来说,电池制造商(如LG、SDI、SK)和供应商是主要的专利申请人。

在中国,像宁德时代、比亚迪等公司在专利申请活动中处于领先地位,并辅以电池价值链上的供应商活动。在美国,申请者的范围从材料供应商到电池集成商,但也包括大学。

在欧洲,电池价值链上的大公司(尤其是材料/化学公司,如巴斯夫、优尼科)和原始设备制造商是领先的申请者。在某些情况下,领先的申请者还包括电池制造商,偶尔也有研究机构(RTOs),不太常见的是大学。

各国的专业化和技术组合

可以观察到,尽管中国的LIB出版物份额超过50%,但仍然存在积极的专业化,例如Zn-air, Li-S, ZIBs或SIBs(图10)。除了AIB之外,日本没有相应的专利专门化(图11)。德国和欧盟28国专门研究RFB和Li-air专利,而欧盟专门研究AIB和SIB出版物。

2.3 资源可用性

原料生产

除了地球上的绝对储量外,原材料的地理分布也起着重要作用,特别是从欧洲的角度来看。图12显示了原材料的最高生产活动(3个最大的生产国)。表3和图13分别显示了欧洲总体和国家层面的生产活动和储量。虽然欧洲国家并不是上述任何一种材料的最大生产国,但欧洲已经在进行钠和硫等一些材料的生产活动,从长远来看,欧洲现有的储备可能会被利用。

2. 替代电池技术

2.4 金属离子电池

金属离子(Me-ion)电池是用于电化学能量转换和存储的系统,在放电和充电过程中,只有一种离子在负极和正极之间来回穿梭。锂离子电池通常由一种特殊的阴极材料和一种阳极材料组成,每一种材料都沉积在金属集流箔上。两个电极由微孔隔膜分离,而离子传输通常由液体电解质实现。锂离子电池在许多应用中被认为是最先进的,锂离子电池是最著名的代表,但不是唯一的。其他替代Me-ion电池遵循与锂离子电池相同的穿梭原理,但使用钠、铝、锌或镁等金属代替锂。

2.4.1 钠离子电池

技术

钠离子电池(SIBs)的研究可以追溯到上个世纪中叶,自那时以来取得了很大进展。近年来,包括Faradion、Tiamat、Natron能源、比亚迪和CATL在内的多家公司和初创企业都声称已接近商业化,或者已经开始大规模生产。因此,SIB的TRL级别可以设置为8或9。

由于Na+比Li+具有更大的离子半径(102比76 pm)和更高的原子量(22.98比6.94 g/mol),并且SIB的电池电压大多比LIB低,因此预计重量和体积能量密度会略低。目前实际的重力能量密度,例如CATL的情况,在140-160 Wh/kg的范围内,但预计在未来的电池一代将超过200 Wh/kg。循环寿命通常在100-1,000次循环之间。然而,这些值高度依赖于电池的化学性质,在1C下也可以达到4000次以上的循环,达到初始容量的80%,这与目前最先进的LIB相当。此外,SIB具有与LIB相似的库仑效率,其往返效率高于90%,可与磷酸铁锂(LFP)(97%)和锂镍锰钴氧化物(NMC)(95%)电池相媲美。与LIB相比,电池的耐低温性是一个优势:即使在-20°C,容量保持率仍为90%,而LIB的容量保持率为60 - 70%。然而,对于LIB,温度窗口也强烈依赖于化学体系。

应用和市场相关性

根据阴极和剩余电池的设计,SIB可以用于各种应用:层状氧化物实现的相对较高的能量容量使得它们可以用于(轻型)电动汽车,而聚阴离子阴极则可以实现良好的长期存储应用。普鲁士白色阴极显示出良好的功率能力,这就是为什么这种类型也非常适合叉车,电动工具,例如12 V/48 V启动,照明和车辆点火电池。因此,考虑到SIB的潜在应用领域,很明显,它们特别可能与LFP或PbA电池竞争。在相应的比较中,SIB在能量密度、功率密度、低温性能、快速充电能力和总成本方面表现相似甚至更好。

成本、资源、生产和供应链

地壳和水中Na含量分别为28400 mg/kg和11000 mg/L,而Li含量分别为20 mg/kg和0.18 mg/L。因此,这种产出材料的可得性要高得多,特别是因为它不是只集中在少数几个国家。与LIB相比,SIB的材料成本也更低。特别是在阴极方面,通过消除昂贵的原材料(例如,Co或可能的Ni),可以实现相当大的成本优势。此外,用铝代替钴作为阳极集流器更为经济。然而,使用目前比石墨更昂贵的HC,对价格产生不利影响。此外,由于HC的比密度较低,不可逆容量较高,因此需要更厚的涂层,从而需要更多的活性材料。总的来说,SIB电池的材料成本估计约为LIB电池的40 - 60%。需要注意的是,成本在很大程度上取决于材料配对,实际的成本降低仍然需要在实践中证明。

2.5 金属硫电池

金属硫(Me-S)电池因其可获得性高、价格低、重量轻等优点而受到研究和开发。许多不同的金属与S阴极结合研究,如单价的Li, Na, K和多价的Mg, Ca和Al。在这些系统中,Li-S是最先进的室温(RT)操作系统。然而,上述金属比锂丰富得多,因此对Me-S电池也很感兴趣。

Me-S电池的目标是利用硫的高比容量,理论上在一个完整的双电子反应中有1672毫安时/克。这个值远远高于目前在LIB中应用的任何正极材料。这些电池概念的挑战是硫和金属硫化物的低电子导电性,需要在阴极中使用导电基质或导电剂。这些性质还取决于S的晶体结构,其中存在几个(亚)稳定相。

2.5.1 锂硫电池

技术

Li-S的放电电压在2.4到2.0 V之间。利用高比S和Li容量,在原型电池中已经证明了300至400 Wh/kg的能量密度。目前尚不清楚电池能量如何转化为系统水平,因为与LIB相比,需要更多的电池才能达到所需的系统电压。此外,锂-硫电池可能需要更高的外部压力。循环稳定性也经常落后于最先进的LIB,并且需要大量的电解质剩余。因此,研发目标是设计具有高能量密度和超过100次循环稳定性的大尺寸电池。由于S和金属Li的动力学特性,大多数系统设计用于低于1C的充放电速率。与锂离子电池一样,这种电池系统的危险在于电解质的易燃性和金属锂的反应性。

应用和市场相关性

锂-硫电池可以针对需要特别高的重量能量密度的应用,以及具有高成本敏感性的潜在应用。锂电池的竞争性重量能量密度已经在锂-硫电池上得到了证明。由于潜在的非常高的能量密度,该技术可以在飞行应用领域发挥作用。然而,根据应用的不同,也可能需要高功率密度,这是目前Li-S电池所不能提供的。循环寿命也倾向于限制使用频率低或准备频繁更换电池的应用。由于LIB的成本竞争力尚未在实践中得到证明,因此其相关性(例如固定应用)仍不清楚。

成本、资源、生产和供应链

从原材料成本的角度来看,由于S的成本较低,Li-S电池可以比LIB更便宜。然而,这需要克服几个挑战:开发和扩大薄锂金属阳极的成本效益工艺,减少每Ah的电解质量,以及增加阴极中的S负载与低成本碳基质相结合。专家预计,锂电池和锂电池的成本将在2025年左右持平。从长远来看,根据锂电池价格的发展,如果采用干式涂层等节能处理方法,锂电池的电池成本可能达到50欧元/千瓦时。

来源:小明来电

0 阅读:0