PP透明改性的5种主要方式,高透依旧受“颜值党”欢迎

效果塑连 2024-10-15 03:13:51

近年来,我国透明聚丙烯的生产和销售均呈现出持续上升的态势。随着新工艺、新品种的不断涌现,生产规模、生产效率、产品种类和应用领域都在不断扩展,成为聚丙烯产品中增速最快的品种之一。

受到PP晶体尺寸的影响,普通聚丙烯的透光率和光泽度都限制了其在日用品和透明包包装等领域中的应用。但透明聚丙烯的透明性和光泽度可与典型的透明材料(PET对苯二甲酸乙二醇酯、PVC、PS 聚苯乙烯)相媲美,因而可广泛地用于家庭用品、包装及医用等领域。其产品具有较高的韧性、刚性、耐热性及抗化学性能。近年来,透明聚丙烯的生产和销售均呈现出持续上升的态势。

通过透明改性后,得到的透明PP既兼备了传统PP的性能,又增加其透明度和光泽性因此,为了提高PP的市场价值,需要对其进行透明改性。

影响高分子材料透明性的因素

影响高分子材料透明性的因素很多,比如加工工艺、高分子的分子量大小及其分布等,但是最主要的影响因素有以下几种:

1.1 折射率

对于大对数高聚物来说,都是不完全结晶,即其内部同时存在结晶区与无定型区,但两者的折射率不同时,入射光在结晶区与无定型区的界面处会发生折射与反射,从而不能直接通过,则呈乳白色、不透明,如PE、PA,反之当结晶区和无定型区的折射率相同时,则高聚物透明,如聚4-甲基-1-戊烯。

1.2 结晶度

塑料制品的结晶度越高,其制品的各向异性越大,其透明性越低。所以当结晶度减小时,透明度增加,如那些完全非晶的高聚物,通常是透明的,如PMMA、PS等。

1.3 晶体尺寸

当晶体尺寸小于可见光波长时,光不发生折射和反射,所以即使有结晶也不一定会影响高聚物的透明性。因此无论是球晶还是一般晶体,其结晶尺寸越小,即晶粒越细,越有利于透明度的提高。

1.4 表面粗糙度

对于透明塑料如PE,当样品很薄时,表面粗糙度成为影响透光度的主要因素。若表面粗糙则入射光散射损失较多,透光率下降。

虽然影响高分子材料透明性的因素很多,但是一直以来,对于高聚物透明材料透明改性的研究,却主要集中在降低结晶度和晶体尺寸两方面进行,并且取得了良好的改性效果,同样地,PP的透明改性也主要从结晶度和球晶尺寸两方面着手研究。

通常使用的PP都属于部分结晶,结晶度在50%-60%左右,所以PP的聚集态结构也同时存在结晶区和无定型区。无定型区有利于光的通过,而光线照射到结晶区后,由于晶体尺寸大于可见光波长,使可见光发生折射与反射,不利于光线的通过,从而降低透明性。因此,提高PP的透明性基本上从两个方面进行,一是降低结晶度,即增加无定型区范围;二是降低晶体尺寸。

目前,改进PP透明性的主要方法包括添加透明剂、合成无规共聚物、茂金属催化合成透明PP、共混增透PP以及工艺控制改进PP透明性等。

PP透明性改进的主要方法

2.1 添加透明剂★

普通PP通常结晶成晶体尺寸较大的球晶,由于球晶的直径大于可见光波长,入射光被散射,从而降低了透光率。在PP中加入透明剂后,当PP熔融结晶时,透明剂起到晶核的作用,使原有的均相成核变成异相成核,增加结晶体系内晶核的数目,使微晶的数量增多,球晶数目减少,从而使晶体尺寸变细,树脂透明性提高。

目前,在PP中添加成核剂是对PP进行透明改性最简单有效的方法,根据成核剂的化学结构和组成,透明成核剂通常分为无机类成核剂、高分子成核剂和有机成核剂三大类。

无机类成核剂主要有滑石粉、高岭土、氧化钙等,虽然来源广泛、价格低廉,但是由于与树脂相容性差并且分散性差,成核剂本身会发生浑浊和非同质效应,所以增透程度有限。

高分子类成核剂是指一些高熔点的大分子化合物,主要由聚乙烯基环硅烷类、纤维素芳香酯类、聚氨酯类等,但它们和树脂的共混性不好,而且使用工艺不成熟,目前尚未形成商业品种中。

有机类成核剂主要包括山梨醇类、磷酸盐类和松香类成核剂,具有较好的增透性改效果。山梨醇类成核剂具有自行物理聚合的聚集性质,可溶解在熔融PP中,形成均相溶液。当聚合物冷却时,透明剂先通过自聚集作用形成纤维状的网络,该网络不仅分散均匀,而且具有极大的表面积。随着进一步冷却,PP首先在取向作用下结成层状晶体,然后其它PP链段沿纤维轴向排列结晶。因此提高了PP的成核密度,使PP形成均一细化的球晶,减少对光散射和折射,透明性增大。

对于有机磷酸盐类成核剂,这类化合物中的烷基苯和PP树脂具有良好的亲和性,通过PP骨架链和苯环作用,使PP形成具有规则螺旋结构的稳定晶体,能显著提高材料的力学性能。而对于松香型成核剂来说,因为分子中带有羧基,不稳定易发生异构重排或氧化,可以使PP晶粒细微化,提高结晶温度,缩短加工周期,增加透明度,并且无毒无味。

目前,山梨醇类成核剂是应用于PP透明改性中最为广泛的一类透明成核剂。3,4-二甲基亚苄基山梨醇(DMDBS)对PP的相形态、成核作用及光学性能的影响,发现当DMDBS含量为0.2%-1%时,PP的透明性随DMDBS的增加而提高,当DMDBS含量大于1%时,PP的透明性却出现了与之相反的结果,如图1所示。

脱氢枞酸型成核剂可以大幅度降低PP的雾度,提高光泽度,改善力学性能。脱氢枞酸:脱氢枞酸钾:脱氢枞酸钠为1:1:1(摩尔比)的共晶体(1:1K:1Na) 的改性效果最佳,当其用量为0.3%时,PP的雾度下降了80%,达到7.2%,光泽度提高了35%,达到134.1%,同时具有较好的力学性能。脱氢枞酸型成核剂的加入可以极大地减小PP球晶的尺寸,特别是1:1K:1Na共晶体,经0.3%的1:1K:1Na共晶体成核改性之后,PP球晶粒径小于lμm。脱氢枞酸型成核剂改性PP的结晶温度、熔融温度和结晶度也提高了,1:1K:1Na共晶体的成核改性效率最高。

在偏光显徽镜下观察PP加入硅溶胶,球晶尺寸比同含量纳米SiO2的更细小,在硅溶胶加入量为0.15%处,PP的透明性效果最佳,它的球晶尺寸也明显小于硅溶胶含量0.05%处。与纳米SiO2的最佳含量处相比它的球晶尺寸也更细小。这就说明了PP的雾度值降低,透明性提高与球晶大小有很大联系。球晶尺寸小的地方,结晶度高,透明性好。

当同时添加多种透明剂时,不同透明剂之间表现出协同效应,使PP结晶速率大幅度提高,球晶尺寸变得更小,分散也更均匀,PP的透明度显著提高。

2.2 合成无规共聚物

高聚物的结晶性由其分子链结构决定,高分子链结构越规整越容易结晶。在合成PP的过程中,加入乙烯作为第二单体与丙烯共聚,乙烯在分子主链上无规排列,破坏了PP分子链的规整性,随着乙烯含量的增加,PP的结晶性逐渐下降,球晶结构被破坏,甚至形成细碎的晶粒,很大程度上减少了对光的散射和反射,使PP制品透明性得到提高同时,抗冲击性也得到改善。

2.3茂金属催化合成透明PP

采用茂金属催化剂生产的透明PP树脂透光率可达94%,与PS相当,茂金属催化剂为PP替代其它材料和开辟新领域提供了新机会,并开始挑战主导市场30年的Ziegler-Natter催化剂。但从目前的市场看,用茂金属催化剂生产的PP比例还很小。随着研究开发的深入,茂金属催化的PP产品应用领域将扩大,第二代茂金属催化剂将生产一些新的均聚物、抗冲共聚物以及无规共聚物,这些新产品将加快茂金属类PP市场的发展。

2.4共混增透PP★

随着现代科技的发展,人类对聚合物材料性能的要求越来越高,单一聚合物往往由于其自身性能的局限性而不能满足使用的要求。为了获得综合性能优异的聚合物材料,除了继续研制合成新种类聚合物外,利用现有聚合物通过共混、共聚、填充、增强等方法制备新材料,也成为获取性能优异聚合物材料的重要方法之一。尤其是聚合物共混改性技术,简便易行,既可适应小的生产规模,也可形成大规模生产,已成为制备新性能高分子材料的主要方法。

共混物多相材料的透明性通常因模糊或清晰度降低而受到影响,这主要是由于聚合物之间折光指数的差异和表面粗糙度引起的。评价材料透明性的常用指标为雾度和透光率,一般地透光率越高,雾度越低。对于聚合物共混物来说,雾度和透光率的主要影响因素为分散相粒子尺寸和相对折光指数,折光指数相近以及分散相粒径减小都有利于减少散射,降低雾度,提高透光率。

然而在许多应用中,表面相糙度是限制透明度的主要散射源。研究发现,相对分子质量分布、分子链微观结构、熔体弹性及加工成型都对粗糙度有影响,而决定了雾度的表面粗糙度和透光率都与高聚物表面结晶有关。

共混物的光学透明性并不是各组分透明性的简单平均,例如无定型的透明PET和透明PS共混时,由于两相之间折射率不同,所以得到的薄膜高雾度、不透明,而另一方面SBR/PS共混物由于相容性较差导致相分离的发生,从而使分散相粒径增加,接近可见光波长,发生严重的光散射,因此也是不透明的。所以为改善共混体系的透明性,通常有两种可供选择的途径,其一使混合物的组成之间具有相似的折射率;其二是使分散粒子的粒径小于可见光波长。

在挤出共混工程中,粒子尺寸是剪切速率、界面张力、基体黏度、分散相黏度和橡胶含量的函数。在共混工程中,剪切速率的变化可以改变粒子尺寸,然而这个变化将会在此后的注射成型加工时丧失。只有对结构进行抗凝聚的稳定化处理,才可能用上述办法得到稳定与合理的粒子尺寸,例如在界面的接枝反应和共混工程中橡胶的动态交联。

虽然减小分敢颗粒的尺寸使其小于可见光波长,可改进共混物的透明性,但是分散相颗粒太小往往使韧性下降。最好的方法是选抒折射率相近的组分,若两组分的折光率相等,则不论形态结构如何,共混物总是透明的,如甲基丙烯酸甲酯、丁二烯、苯乙烯三元共聚物(MBS)型树脂。

为了提高PP的耐冲击性和透明性,将PP、LDPE和EDPM共混是有实际意义的。LDPE与PP共混时能够阻止PP结晶,大大降低PP结晶速率,但是在PP结晶过程中,当LDPE的加入最少于10%时,PP球晶的尺寸出现降低。这是因为LDPE与PP部分相容,而少量的LDPE与PP共混时却是完全相容的,而乙丙橡胶在相界面处,通过共结晶作用与PP基体的结合,则能提高PP与LDPE的相容性,细化球晶半径。

研究发现,将少量的LDPE和松香型成核剂同时加入到PP中,与单加松香型成核剂时相比,PP的结晶速率大幅提高,生成的球晶不但半径变小,而且半经分布也更为均一,PP的透明性得到进步提高如图2。

用尼龙6和PP共混能够提高PP的透明性。因为PA6与PP相容性较差,所以采用马来酸酐接枝PP(MAPP)作为相容剂,MAPP易于与聚酰胺未端的氨基发生反应。而在聚合物冷却的过程中,PA6先结晶,为PP的结晶提供了异相的晶核,即PP附着在PA6晶粒上发生异相结晶。相对于均相结晶,此时的成核密度大大地提高了,结晶速度加快,球晶尺才变小。

一般地,丙烯共聚物与高分子量的橡胶共混得到的产物是不透明的,但是与低分子量橡胶混合的产物虽然冲击强度较低,但是材料的透明度却很高。

但是,通过共混改进透明性,同时也具有很大的局限性。因为它不仅要求两种或多种基材材料具有良好的相容性,并且要求其折光率相近,否则很难实现透明改性,因此该方法发展缓慢,目前进行研究的人很少。

2.5工艺控制改进PP透明性

工艺控制和添加透明剂一样,是提高PP透明性的有效方法。其中,对透明性影响最大的工艺条件主要为加工温度和冷却温度。

(1)加工温度

塑料的成型加工温度越低,残留于熔体内的原有晶核会越多,起到加入成核剂的作用,使结晶尺寸变小,从而提高透明性。

(2)冷却温度

冷却温度越低,则冷却越快,熔体迅速通过结晶区,结晶度越低,越有利于透明性的提高。同时,球晶尺寸也将越小,有利于透明性的提高,尤其是对于PP来说,冷却温度越低,PP中拟六方晶型含量越大,透光率也越高。

(3)控制成型取向

一般地,成型中的取向会增大双折射,但是山梨糖醇类透明剂改性PP时,注塑得到的透明PP皮层内发生的分子取向有利于降低光散射,提高透光率。因此必须合理控制取向,使双折射与光散射降到最低。

注塑过程中,模具的温度、熔体温度、注射压力的升高都会导致产品光学性能的下降;保压时间处于合适的大小,光学性能最优,而冷却时间太短或太长,都会引起产品光学性能的下降。

综上所述,由于添加透明剂的增透工艺简单,并且效果明显,所以长期以来在工业生产中,主要采用添加透明改性剂的方法来提高PP的透明性,效果较好的透明改性剂主要为有机磷酸盐类和山梨醇类增透剂,但是山梨醇类增透剂在加工温度下分解释放出的醛有异味和毒性,而有机磷酸盐类增透剂成本过高,是山梨醇类的2~ 3倍,并且与树脂的相容性有限,分散性差,通常条件下不易混配,容易导致制品表面出现瑕疵点,所以该方法的使用受到很大限制。

目前来看,在国际上研究生产透明PP的最新技术就是采用茂金树催化剂直接合成得到的透明PP。该方法得到的PP不仅具有优异的透明性,并具有良好的综合力学性能,但由于技术难度大,仅为少数国外大企业所拥有,并且成本太高,因此难以普及。

随着透明PP产品的市场份额越来越大,很多公司都不断推出特色产品,以提高市场竞争力。因此,我国相关产业应当从先进催化剂研发,高效透明成核剂开发,先进加工工艺、设备开发角度出发,加快新产品推广步伐,抢占市场份额。

文章来源:互联网

0 阅读:1