磁控溅射技术得以广泛的应用,是由该技术有别于其它镀膜方法的特点所决定的。
其特点可归纳为:可制备成靶材的各种材料均可作为薄膜材料,包括各种金属、半导体、铁磁材料,以及绝缘的氧化物、陶瓷等物质,尤其适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜。
在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;控制真空室中的气压、溅射功率,基本上可获得稳定的沉积速率,通过精确地控制溅射镀膜时间,容易获得均匀的高精度的膜厚,且重复性好;溅射粒子几乎不受重力影响,靶材与基片位置可自由安排;基片与膜的附着强度是一般蒸镀膜的10倍以上,且由于溅射粒子带有高能量,在成膜面会继续表面扩散而得到硬且致密的薄膜,同时高能量使基片只要较低的温度即可得到结晶膜;薄膜形成初期成核密度高,故可生产厚度10nm以下的极薄连续膜。
磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。
磁控溅射的优点:
1、沉积速率快,沉积效率高,适合工业生产大规模应用;在沉积大部分的金属薄膜,尤其是沉积高熔点的金属和氧化物薄膜时,如溅射钨、铝薄膜和反应溅射TiO2、ZrO2薄膜,具有很高的沉积率。2、基片温度低,适合塑料等不耐高温的基材镀膜;3、制备的薄膜纯度高、致密性好、薄膜均匀性好、膜基结合力强。溅射薄膜与基板有着极好的附着力,机械强度也得到了改善;溅射的薄膜聚集密度普遍提高了,从显微照片看,溅射的薄膜表面微观形貌比较精致细密,而且非常均匀。4、可制备金属、合金、半导体、铁磁材料、绝缘体(氧化物、陶瓷)等薄膜;5、溅射的薄膜均具有优异的性能。如溅射的金属膜通常能获得良好的光学性能、电学性能及某些特殊性能;6、环保无污染。传统的湿法电镀会产生废液、废渣、废气,对环境造成严重的污染。不产生环境污染、生产效率高的磁控溅射镀膜法则可较好解决这一难题。
磁控溅射技术是一种非常有效的沉积镀膜方法,非常广泛的用于薄膜沉积和表面覆盖层制备。可被用于制备金属、半导体、铁磁材料、绝缘体(氧化物、陶瓷)等多材料,尤其适合高熔点和低蒸汽压的材料沉积镀膜在适当条件下多元靶材共溅射方式,可沉积所需组分的混合物、化合物薄膜;在溅射的放电气中加入氧、氮或其它活性气体,可沉积形成靶材物质与气体分子的化合物薄膜;且设备简单、镀膜面积大和附着力强。
磁控溅射目前是一种应用十分广泛的薄膜沉积技术,溅射技术上的不断发展和对新功能薄膜的探索研究,使磁控溅射应用延伸到许多生产和科研领域。
1、在微电子领域作为一种非热式镀膜技术,主要应用在化学气相沉积(CVD)或金属有机化学气相沉积(MOCVD)生长困难及不适用的材料薄膜沉积,而且可以获得大面积非常均匀的薄膜。包括欧姆接触的Al、Cu、Au、W、Ti等金属电极薄膜及可用于栅绝缘层或扩散势垒层的TiN、Ta2O5、TiO、Al2O3、ZrO2、AlN等介质薄膜沉积。2、磁控溅射技术在光学薄膜(如增透膜)、低辐射玻璃和透明导电玻璃等方面也得到应用。在透明导电玻璃在玻璃基片或柔性衬底上,溅射制备SiO2薄膜和掺杂ZnO或InSn氧化物(ITO)薄膜,使可见光范围内平均光透过率在90%以上。3、在现代机械加工工业中,利用磁控溅射技术制作表面功能膜、超硬膜自润滑薄膜,能有效的提高表面硬度、复合韧性、耐磨损性和抗高温化学稳定性能,从而大幅度地提高涂层产品的使用寿命
磁控溅射除上述已被大量应用的领域,还在高温超导薄膜、铁电体薄膜、巨磁阻薄膜、薄膜发光材料、太阳能电池、记忆合金薄膜研究方面发挥重要作用。总的来说,磁控溅射技术在当今先进制造业中占据着重要的地位,对东西方科技实力和产业竞争力的提升发挥了重要作用。随着科技的不断进步,磁控溅射技术也将继续发展和完善,以满足更加复杂的工业应用需求,推动磁控溅射技术的进一步发展。