不同类型的真空镀膜技术原理及发展趋势

真空网 2024-10-29 09:32:18

真空镀膜技术简称PVD,在真空条件下,采用物理方法,使材料源表面气化成原子、分子或离子,在基体表面沉积具有某种特殊功能的薄膜的技术。真空镀膜设备镀膜技术主要分为蒸镀、溅射和离子镀三大类。而常见的蒸发镀膜技术分别为,电阻蒸发,电子束蒸发,各自有各自的特点。

蒸发镀膜是在真空环境中,将材料加热至蒸发状态,使其原子或分子蒸发并沉积在基底表面形成薄膜的过程。通过精确控制蒸发源的温度、蒸发速率和基底的温度等参数,可以获得具有特定性能的薄膜。

物理过程由物料蒸发输运到基片沉积成膜,其物理过程为:采用几种能源方式转换成热能,加热镀料使之蒸发或升华,成为具有一定能量(0.1~0.3eV) 的气态粒子(原子、分子或原子团);离开镀料表面,具有相当运动速度的气态粒子以基本上无碰撞的直线飞行输运到基体表面;到达基体表面的气态粒子凝聚形核生长成固相薄膜;组成薄膜的原子重组排列或产生化学键合。

近年来,该法的改进主要是在蒸发源上。为了抑制或避免薄膜原材料与蒸发加热器发生化学反应,改用耐热陶瓷坩埚,如BN坩埚。为了蒸发低蒸气压物质,采用电子束加热源或激光加热源。为了制造成分复杂或多层复合薄膜,发展了多源共蒸发或顺序蒸发法。为了制备化合物薄膜或抑制薄膜成分对原材料的偏离,出现了反应蒸发法等。

二、热蒸镀工作原理:

真空蒸发镀膜包括以下三个基本过程∶

(1)加热蒸发过程。包括由凝聚相转变为气相(固相或液相→气相)的相变过程。每种蒸发物质在不同温度时有不相同的饱和蒸气压;蒸发化合物时,其组分之间发生反应,其中有些组分以气态或蒸气进入蒸发空间。(2)气化原子或分子在蒸发源与基片之间的输运过程,即这些粒子在环境气氛中的飞行过程。飞行过程中与真空室内残余气体分子发生碰撞的次数,取决于蒸发原子的平均自由程,以及从蒸发源到基片之间的距离,常称源-基距。(3)蒸发原子或分子在基片表面上的沉积过程,即是蒸气凝聚、成核、核生长、形成连续薄膜。由于基板温度远低于蒸发源温度,因此,沉积物分子在基板表面将直接发生从气相到固相的相转变过程。

将膜材置于真空镀膜室内,通过蒸发源加热使其蒸发,当蒸发分子的平均自由程大于真空镀膜室的线性尺寸时,蒸汽的原子和分子从蒸发源表面逸出后,在飞向基片表面过程中很少受到其他粒子(主要是残余气体分子)的碰撞阻碍,可直接到达被镀的基片表面,由于基片温度较低,便凝结其上而成膜,为了提高蒸发分子与基片的附着力,对基片进行适当的加热是必要的。为使蒸发镀膜顺利进行,应具备蒸发过程中的真空条件和制膜过程中的蒸发条件。

蒸发过程中的真空条件:真空镀膜室内蒸汽分子的平均自由程大于蒸发源与基片的距离(称做蒸距)时,就会获得充分的真空条件。为此,增加残余气体的平均自由程,借以减少蒸汽分子与残余气体分子的碰撞概率,把真空镀膜室抽成高真空是非常必要的。否则,蒸发物原子或分子将与大量空气分子碰撞,使膜层受到严重污染,甚至形成氧化物;或者蒸发源被加热氧化烧毁;或者由于空气分子的碰撞阻挡,难以形成均匀连续的薄膜。

三、真空蒸镀特点:

优点:设备比较简单 、操作容易;制成的薄膜纯度高、质量好,厚度可较准确控制;成膜速率快,效率高;薄膜的生长机理比较简单;

缺点:不容易获得结晶结构的薄膜;所形成的薄膜在基板上的附着力较小;工艺重复性不够好等。

蒸发源的种类

常见的蒸发源包括电阻加热蒸发源、电子束蒸发源等。

1. 电阻加热蒸发源:通过电流加热材料,简单易用。

2. 电子束蒸发源:利用电子束的能量加热蒸发材料,可实现更高的温度和更精确的控制。

电阻蒸发镀膜技术采用电阻加热蒸发源的蒸发镀膜技术,一般用于蒸发低熔点材料,如铝、金、银、硫化锌、氟化镁、三氧化二铬等;加热电阻一般采用钨、钼、钽等。奇优点,结构简单,成本低。缺点材料易与坩埚反应,影响薄膜纯度,不能蒸镀高熔点的介电薄膜;蒸发率低。电子束蒸发,利用高速电子束加热使材料汽化蒸发,在基片表面凝结成膜的技术。电子束热源的能量密度可达104-109w/cm2,可达到3000℃以上,可蒸发高熔点的金属或介电材料如钨、钼、锗、SiO2、AL2O3等。电子束加热的蒸镀源有直枪型电子枪和e型电子枪两种(也有环行),电子束自源发出,用磁场线圈使电子束聚焦和偏转,对膜料进行轰击和加热。其优点可蒸发任何材料,薄膜纯度高,直接作用于材料表面,热效率高。缺点电子枪结构复杂,造价高,化合物沉积时易分解,化学比失调。为了实现有效的蒸发镀膜,真空环境是必不可少的。以下是真空环境的几个重要作用,减少气体分子的碰撞,防止薄膜受到污染;降低原子或分子的平均自由程,增加它们到达基底的概率;避免气体反应对薄膜性质的影响。但在进行蒸发镀膜之前,基底的处理非常重要。基底表面必须干净、平整,以确保薄膜的附着力和质量。

0 阅读:2